首页> 外文OA文献 >Bio-electrochemical denitrification by a novel proton-exchange membrane electrodialysis system - a batch mode study
【2h】

Bio-electrochemical denitrification by a novel proton-exchange membrane electrodialysis system - a batch mode study

机译:新型质子交换膜电渗析系统的生物电化学反硝化-间歇模式研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BACKGROUND: Contamination of nitrate in ground and surface water has become an ever-increasing and serious environmental problem. Biological methods hold the promise of converting nitrate into harmless nitrogen. A novel denitrification system which combines proton-exchange membrane electrodialysis with simultaneous bio-electrochemical autotrophic denitrification has been developed. The proton-exchange membrane was used to transfer current and to exclude oxygen or other oxidative chemicals generated in the anode reaction. The H(2) generated by the cathode was utilized by autotrophic denitrifying microorganisms in the cathode cell to reduce nitrate. In this study, the transport of H(+), a denitrification kinetics model and factors influencing the denitrification rate were explored in batch mode. RESULTS: The addition of 0.03 mol L(-1) H(2)SO(4) into the anode cell enhanced proton transport and maintained the pH of the cathode cell in an appropriate range for biological denitrification. The denitrification rate was affected by applied current and biomass. Under adequate current conditions, the kinetics of the denitrification process followed a zero-order kinetics model; the average denitrification rate for unit biomass was calculated to be 9.36 mg NO(3)(-)-N VSS g(-1) h(-1). CONCLUSIONS: Results indicate that the system is suitable for denitrification. Owing to its simple structure and operation, it has the potential for use as a system to reduce nitrate in water. (C) 2010 Society of Chemical Industry
机译:背景:地下水和地表水中硝酸盐的污染已经成为一个日益严重的严重环境问题。生物方法有望将硝酸盐转化为无害的氮。已经开发了将质子交换膜电渗析与同时生物电化学自养反硝化相结合的新型反硝化系统。质子交换膜用于转移电流并排除阳极反应中产生的氧气或其他氧化性化学物质。阴极产生的H(2)用于阴极细胞中的自养反硝化微生物,以还原硝酸盐。在这项研究中,以批处理方式研究了H(+)的迁移,反硝化动力学模型和影响反硝化速率的因素。结果:向阳极电池中添加0.03 mol L(-1)H(2)SO(4)增强了质子的传输,并将阴极电池的pH值保持在适当的范围内,以进行生物反硝化作用。脱氮率受施加电流和生物量的影响。在适当的电流条件下,反硝化过程的动力学遵循零级动力学模型。计算得出的单位生物量平均反硝化率为9.36 mg NO(3)(-)-N VSS g(-1)h(-1)。结论:结果表明该系统适用于反硝化。由于其简单的结构和操作,它有潜力用作还原水中硝酸盐的系统。 (C)2010年化学工业学会

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号